数学の真髄-基本原理追究編-文理共通 PART1/PART2 のバックアップ(No.19)


講座情報

  • 講座コード:9843(PART1)・9912(PART2)
  • 担当講師:青木先生
  • 収録年度:2018年度
  • 授業回数:90分*40回(PART1・PART2各20回)
  • 確認テスト:40回(PART1・PART2各20回)
  • 講座修了判定テスト:4回(PART1・PART2各2回)
  • レベル:5~7
  • キャッチコピー:本格的な入試演習を始める前に、高度な基本知識と論理を整理しよう
  • 対象学年:高2・高3・高卒生
  • 講座の対象:東大・京大をはじめ最難関大合格を目指す生徒
  • 講座の目標:Ⅰ・A/Ⅱ・Bの本質的で論理的な理解
  • 学習項目:○数列(和と差分・漸化式) ○場合の数と確率 ○論理(同値変形・存在条件の処理) ○写像の値域 ○多項式(一致の定理) ○ベクトル(一次独立と斜交座標・内積と符号付き長さ・外積) ○整数の合同式 ほか
  • 学習内容:教科書の内容を覚えて、問題をたくさん解いて、公式や解法をいくら暗記しても、東大などの超難関大学を攻略することはできません。数学的事実を正確に理解し、それを論理的に正しく使う力がどうしても必要です。この講座では、実践演習を始める前に必要な基本的かつ本質的な「未知の問題を処理する考え方」を学びます。
  • 受講上の注意:高3生のための数学の真髄[講座番号9831]と内容が一部重複しています。
  • 必須講習講座:未記載
  • 事前受講講座例:未記載
  • 予習の仕方:未記載
  • 復習の仕方:未記載
  • 講座の構成:
    • PART1
      講数内容
      Vol.1 第1章差分と数列の和
      Vol.1 第2章差分の活用
      Vol.1 第3章漸化式
      Vol.1 第4章「場合の数」のいちばん大切なこと
      Vol.1 第5章様々な数え上げ
      Vol.1 第6章「確率」のいちばん大切なこと
      Vol.1 第7章条件付確率・独立反復試行
      Vol.1 第8章二項定理
      Vol.1 第9章漸化式を作る1
      Vol.1 第10章漸化式を作る2
      Vol.2 第1章命題と条件
      Vol.2 第2章領域の図示
      Vol.2 第3章全称と存在
      Vol.2 第4章必要と十分
      Vol.2 第5章同値変形1
      Vol.2 第6章同値変形2
      Vol.2 第7章同値変形3
      Vol.2 第8章同値変形4
      Vol.2 第9章同値変形5
      Vol.2 第10章必要条件と束
    • PART2
      講数内容
      Vol.1 第1章写像の原理
      Vol.1 第2章いろいろな写像1
      Vol.1 第3章いろいろな写像2
      Vol.1 第4章いろいろな写像3
      Vol.1 第5章いろいろな写像4
      Vol.1 第6章いろいろな写像5
      Vol.1 第7章多項式の割り算
      Vol.1 第8章因数定理と一致の定理
      Vol.1 第9章一致の定理の応用・積の微分
      Vol.1 第10章接する条件
      Vol.2 第1章一次独立と斜交座標
      Vol.2 第2章空間ベクトルの一次独立・内積と符号付き長さ
      Vol.2 第3章内積
      Vol.2 第4章外積
      Vol.2 第5章ベクトル演習
      Vol.2 第6章三角関数の一番大切なこと
      Vol.2 第7章ベクトルと三角関数
      Vol.2 第8章有名不等式
      Vol.2 第9章合同式
      Vol.2 第10章合同式を用いた論証

この講座について

神(GOD)の講義。

 東大・京大を始めとする最難関大学合格の為に絶対的に必要な(しかし殆どの学校ないしは予備校の授業では教えられていない)基本(≠簡単)原理の本質的な理解を丁寧に徹底して行う。

師曰く、「世間には公表していないが、東大を目指す人のために作った講座」だそう。(もちろん東大以外を志望する人が受けてはいけないという意味ではない。ただ発言した場が特進の授業だからである。)

 今までただ漠然と数学に向き合ってきた人には衝撃が走るに違いない。毎回、様々な重要概念を学ぶ事が出来るが、特に論理・確率・写像・三角関数・ベクトル・数列については他では代用しがたい理解の深化を与えてくれる。*1

 軌跡の問題を何も考えずに即刻パラメーター消去したり、等式を無闇に2乗し“同値記号”で結んだりする。ましてや確率をテキトーに掛け算して求める人々への救済講座。自分が今までどれ程本質からズレた数学をしてきたかがよく分かる。1つでも上記の行動が当てはまっているのなら、もしくはその行動の深刻さが分からなければ、この講座を受講する価値は十二分にある。

 第1講では、もはや暗記事項と化した数列のΣ公式を自力で導出できるようになる事が目標。解法暗記的に導出するのではなく何故導出できるのか、メカニズムも徹底的に教えてくれる。初回から文字通り数学の世界が大きく変わる。

 ベクトルの講義では、大学以降で大事になってくるベクトルの見方を学べる。明言はしないものの学習指導要領範囲外の一次変換まで扱う。後に師の板書を2×2行列で書けることを知ると線形代数が生き生きと見えるようになり、基本原理の大切さ、そしてかの有名な斜交座標グッズの素晴らしさを思い知る(尤もあれは長さは変えられないのであるが)。さらに長岡先生もよく仰っている、三項間漸化式の解き方もこの話につながっていることを知ると、形容し難い感動すら覚える。

点と直線の距離公式や三角関数の膨大な公式たちはこの講座をマスターすれば全く覚える必要などなくなる(し、覚えた公式を使おうとした所で自分の頭が悪くなる気がして使いたくなくなってくる)。

講義は丁寧で、かなり基本的なレベルから始まるが到達点は受講者によって大きく変わると思われる。師の仰るような、考える数学をする習慣がつけば1年後には見違えるような数学力がつく。

 この講座はタイトル通り基本原理の追求に徹底しているので、最低限の知識を持っていない初学者/初心者には向いていないが、逆にいうと最低限(教科書レベル)の知識があれば誰でもついていける。参考書、授業等(オススメは旺文社の『総合的研究』(長岡亮介著))で一通り数学ⅠAⅡBを履修して、ある程度の演習を積んだ状態で受けるのがベスト。

 当然だが予習必須。予習をしないと師の思考回路を理解することもままならない。受講後はしっかりと復習し、師の仰るような考える数学をする習慣をつけよう。

 講義毎に章末問題が3題程付いている。難易度が非常に高い問題が多いので全くできなかったとしてもそこまで落ち込む必要はない。*2

 物理選択者については、この講座+真髄理系(もしくは、数学ぐんぐん(応用編)+微積もぐんぐん(応用編))を受講してから「ハイレベル物理」を受講すると数学的な理解不足という点で躓く事は無いと思って構わない。寧ろそのレベルまで数学の素養を高めずに受講すると、授業を理解するのが困難になる可能性があるので注意されたい。サラッと言及する数学的背景(カバリエリの原理や一次近似など)が真髄にて丸々1講のテーマとして扱っていたりする事からも相性が良いのは明らかだろう。(ただ十分条件であって必要条件でないのは注意されたし。金銭的にキツければ苑田先生だけ受けるのもアリ。最低限の補足はもちろん丁寧にしてくれる。)

 この講座の設置に伴い、2020年度からは師の高三向けの東大特進の授業が大きく変わる。高二の東大特進又は数学の真髄(ⅠAⅡB)の受講を前提に、高三での受験対策用の講座を開講することになる。高2の東大特進では、この講座と入試演習までの穴埋めを行う。したがって、本講座と高2東大特進を取っておけば高3になった時に師の特進での授業がよりスムーズに理解できるだろう。

 PART2 VOL.2 問題1.1 (2)の解説を師は忘れているが、教科書レベルの問題なので簡単に解けるだろう。





*1 特に論理に関しては高校の教科書や市販のほとんどの参考書ではあまり詳しく扱われないので、それも相まって価値が高いものとなっている。
*2 師自身も東大特進で「あのテキストに載せた章末問題は難易度が高すぎたみたいで反省してます」と仰っていた